Meteor Exoplanet Detection Exam on the theoretical part (2h, no document)

Notations :

In the following we consider regularly sampled signals at time instants t = 1, 2, ..., n, with n an even integer.

Bolded symbols refer to vectors (for instance $\mathbf{y} := [y_1 \ y_2 \dots y_n]^{\top}$) and underlined letters refer to matrices (for instance $\underline{Y} := [\mathbf{y}_1 \dots \mathbf{y}_n]$).

The (angular) Fourier frequencies are denoted by $\lambda_j := \frac{2\pi j}{n}, j = 0, 1, \dots, n$. The set of frequencies $\{\lambda_j\}, j = 1, \dots, n/2 - 1$, is denoted by $\overline{\Omega}_n$.

Let $\mathbf{f}(\lambda_j) := [e^{i\lambda_j} e^{2i\lambda_j} \dots e^{(n-1)i\lambda_j}]^\top$ and $\underline{\underline{F}} := [\mathbf{f}(\lambda_0) \mathbf{f}(\lambda_1) \mathbf{f}(\lambda_{n-1})].$

The Discrete Fourier Transform at frequency λ_j of a vector \mathbf{y} is defined as the weighted scalar product $\widetilde{\mathbf{y}}(\lambda_j) := \frac{1}{n} \langle \mathbf{f}(\lambda_j), \mathbf{y} \rangle.$

I. Distribution of the periodogram (10 points)

- 1. Assume that the signal **y** is a sampled white Gaussian noise, with components $Y_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$.
 - (a) Show that the periodogram at frequency λ_j , $P(\lambda_j)$, can be written as the sum $X_r^2 + X_i^2$, and define X_r and X_i .
 - (b) Characterize the distribution of X_r and X_i .
 - (c) Compute $\mathbb{E}X_r$ and $\mathbb{E}X_i$.
 - (d) Compute $\operatorname{var} X_r$ and $\operatorname{var} X_i$ for $j \neq 0, n/2$.
 - (e) Deduce from the previous question the distribution of $P(\lambda_j)$, $j \neq 0, n/2$.
- 2. Assume now that the signal **y** is a white Gaussian noise plus a sine at some Fourier frequency $\lambda_k \in \overline{\Omega}_n$. So each component $Y_t = B_t + A \sin(\frac{2\pi kt}{n})$, with $B_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$ and $A \in \mathbb{R}^+$ the sine amplitude.
 - (a) Show that for Fourier frequencies $\lambda_i \neq \lambda_k$, the distribution of $P(\lambda_i)$ is the same as in 1(e).
 - (b) Derive the distribution of $P(\lambda_k)$, the periodogram at signal frequency.
 - (c) Deduce from the previous expression the parameters that will influence the detectability of the signal.
- 3. Assume now that the signal **y** is a sampled colored noise with PSD S(f) (with no signal). Are the results above on the distribution of the periodogram modified with respect to the white Gaussian noise case? How?
- 4. Assume now that the signal \mathbf{y} is a white Gaussian noise plus a sine at some frequency ω_k , and that we zero-pad \mathbf{y} , resulting in n' > n samples (so we add n' - n zero samples). Make a picture explaining the structure and distribution of the periodogram when $\omega_k \in \overline{\Omega}_n$ (ω_k is on the Fourier grid) and when $\omega_k \notin \overline{\Omega}_n$. (You do not have to compute precisely the non centrality parameters when they exist.)

II. Hypothesis tests based on the periodogram (10 points)

We consider here a subset Ω_m of m frequencies taken in the set $\{\lambda_1, \lambda_2, \dots, \lambda_{n/2-1}\}$. We denote the order statistics of the periodogram by

$$\max_{j}(P(\lambda_{j})) := P_{(1)} > P_{(2)} > \ldots > P_{(m)} := \min_{j} P(\lambda_{j}).$$

Under the null hypothesis, **y** is composed from n i.i.d. samples of a white noise with variance σ^2 .

1. Consider the test

$$\frac{P_{(1)}}{\sigma^2} \underset{H_0}{\overset{H_1}{\gtrless}} \gamma. \tag{1}$$

- (a) Compute the probability of false alarm (P_{FA}) of this test.
- (b) Assume that under the alternative hypothesis, \mathbf{y} is as in question I.2, where the Fourier frequency $\lambda_j \in \Omega_m$ of the sine is unknown. Compute the probability of detection (P_{DET}) of this test.
- 2. Explain what problem naturally arises for the previous test when a large number of frequencies are involved in Ω_m .
- 3. Fisher test.
 - (a) Write the Fisher test.
 - (b) Justify this test statistic.
 - (c) Explain its advantage with respect to the test in expression (1) above.
- 4. Consider the test

$$\frac{P_{(k)}}{\sigma^2} \underset{H_0}{\overset{H_1}{\gtrless}} \gamma.$$
⁽²⁾

- (a) Compute the P_{FA} of this test.
- (b) Under which kind of alternatives is this test more powerful than test (1)? Why?